Panfrost
A reverse engineered FOSS driver for Mali Midgard and Bifrost GPUs
Contributors

● Alyssa Rosenzweig
 − Most of the Midgard RE/Driver development
● Connor Abbott
 − Initial Midgard ISA RE
 − Most of the Bifrost ISA RE
● Lyude Paul & BiOpen
 − Helped with Bifrost utilities (assembler+panwrap)
Panfrost

• Aiming to support the following lines of ARM GPUs
 – Midgard (Mali Txxx)
 – Bifrost (Mali Gxx)
• Reverse engineered from tracing ARM’s userspace 3D drivers and the open source kernel driver from ARM
• 3D only! Most of the variants of display hardware used with Mali GPUs have mainline drivers
Midgard
Midgard

- Codename for ARM’s Mali Txxx line of embedded GPUs
- In many, many devices
- Especially Chromebooks
Midgard
What’s done?

● ISA reverse engineered
 - NIR-based compiler supporting simple shaders
● ES 2.0 command stream reverse-engineered
 - Prototype Mesa driver
Midgard
ISA Architecture

- Three unit types:
 - ALU
 - Load/store unit
 - Texture unit

- Limited parallelism
Midgard
ALU unit

- Both scalar and vector (SIMD) units
 - VMUL, VADD, SMUL, SADD, VLUT
- Pipelined, VLIW-packed, some parallelism
 - VMUL, SADD concurrent
 - VADD, SMUL, VLUT concurrent
- Various opcodes allowed on a given unit
- Scheduler goal: minimize number of bundles and register pressure
Midgard
Job chains
• Unlike many other GPUs, Midgard+ use “job chains” instead of true command streams
• Chains contain pointers to each job’s dependencies
• Essentially acts as a HW level GPU scheduler
Midgard
Job chains

• All configuration in nested memory structures
 – Shader core descriptor, fragment descriptor, etc
• Ideally, entire frame in memory and submitted at once
• Tiled rendering
• Types of jobs:
 – Vertex: vertex shaders
 – Tiler: sorts triangles into tiles, passes down to fragment shader
 – Fragment: final rasterization over passed in tiles
• Hardware internals generally hidden from driver
Bifrost
Bifrost

- Codename for ARM’s Mali Gxx line of embedded GPUs
- Latest gen, not in many devices yet
- Shader core completely redesigned since Midgard
- Shares a kernel driver with Midgard
Bifrost

What’s done?

• Much of the ISA has been reverse engineered and documented
• Cmdstream partially RE’d, still more work to do
• No mesa stub yet!
Bifrost
Basic architecture

• Clause based
• Scheduler chooses clauses to run, not instructions
• Clauses contain instructions and immediates, unpacked by GPU at runtime
• Scheduling uses scoreboard mechanism
• No high latency instructions
Bifrost
Basic architecture

• Instructions have 3 stages
 – Register read/write
 – FMA
 – ADD

• Have 2 read ports, 1 read/write, 1 write, and one const port

• Results of FMA/ADD can be passed through to next instruction (skips register file, less power and spilling)
Bifrost Basic architecture

• Has four other units:
 – Varying interpolation unit
 – Attribute fetching unit
 – Load/store unit
 – Texture unit
• Execution unit interacts with other units through special variable-latency instructions
• Only one special instruction per clause
 – Bypasses fixed-latency mechanism used for registers
Bifrost
Basic architecture

- Clause packing is **intense**
- 12 different formats used for instructions in clauses, 13 in total
- Instructions usually end up split between multiple quadwords
- Constants sometimes packed in instruction quadwords
Current Tools

- Panloader: main repo for utilities such as
 - Panwrap: provides userspace tracing/recording/replay
 - Midgard&Bifrost assembler
 - Shader runner
- ShaderProgramDisassembler
 - Midgard&Bifrost disassembler
Links

- https://gitlab.freedesktop.org/panfrost
- Build instructions for T8xx: https://panfrost.freedesktop.org/building-panfrost-t-mesa.html
Demo time!