
Value Range Tracking in NIR
Ian Romanick – X.org Developers Conference 2018 (Lightning Talk)

2

Overview

 Existing “0th-order” tracking

 WIP 1st-order tracking

 Existing 2nd-order tracking

 Future 2nd-order tracking

3

Existing 0th-order tracking

Rely on known range produced by certain operations

 (('fabs', ('b2f', a)), ('b2f', a))

4

WIP 1st-order tracking

Gather information about SSA values based on known properties of operation
results.

 Analysis conceptually similar to existing 0th-order

– Result of fabs must be ≥ 0, etc.

– (value ≥ 0) * (value ≤ 0) → result must be ≤ 0

– Analysis is on demand, but results are cached.

 Add simple predicates for use in nir_opt_algebraic

(('fge', 'b(is_not_negative)', 'a(is_not_positive)'), True)

5

WIP 1st-order tracking

Results so far are good

 Two main commits:
– nir: Use value range analysis to eliminate tautological compares

– nir: Use value range analysis to convert a fmin to an fsat

total instructions in shared programs: 15088355 -> 15027041 (-0.41%)
instructions in affected programs: 2823740 -> 2762426 (-2.17%)
helped: 10614
HURT: 2
helped stats (abs) min: 1 max: 294 x̄: 5.78 x̃: 2
helped stats (rel) min: 0.05% max: 58.33% x̄: 3.23% x̃: 1.37%
HURT stats (abs) min: 6 max: 6 x̄: 6.00 x̃: 6
HURT stats (rel) min: 0.30% max: 0.30% x̄: 0.30% x̃: 0.30%
95% mean confidence interval for instructions value: -5.99 -5.56
95% mean confidence interval for instructions %-change: -3.32% -3.15%
Instructions are helped.

6

Existing 2nd-order tracking

Tim Arceri’s recently did some work to propagate compare results into branches.

7

Future 2nd-order tracking

Infer value ranges from if-statement conditions, loop conditions, etc.

 Add NIR instructions similar to clang’s / MSVC’s “assume” built-in.

– ssa_4 = assume_gt ssa_3, 0

– Could expose directly in GLSL / SPIR-V

 Allows tracking of ranges after if-statements are replaced with bcsel

 Interferes with copy prop, CSE, etc.

– Run optimization loop, strip assume instructions, run loop again?

 Or – hash values based on SSA and block ID

– Harder to deal with bcsel

8

Questions?

https://cgit.freedesktop.org/~idr/mesa/log/?h=simple-range-analysis

https://cgit.freedesktop.org/~idr/mesa/log/?h=simple-range-analysis
https://cgit.freedesktop.org/~idr/mesa/log/?h=simple-range-analysis

Value Range Tracking in NIR
Ian Romanick – X.org Developers Conference 2018 (Lightning Talk)

2

Overview

 Existing “0th-order” tracking

 WIP 1st-order tracking

 Existing 2nd-order tracking

 Future 2nd-order tracking

3

Existing 0th-order tracking

Rely on known range produced by certain operations

 (('fabs', ('b2f', a)), ('b2f', a))

4

WIP 1st-order tracking

Gather information about SSA values based on known properties of operation
results.

 Analysis conceptually similar to existing 0th-order

– Result of fabs must be ≥ 0, etc.

– (value ≥ 0) * (value ≤ 0) → result must be ≤ 0

– Analysis is on demand, but results are cached.

 Add simple predicates for use in nir_opt_algebraic

(('fge', 'b(is_not_negative)', 'a(is_not_positive)'), True)

5

WIP 1st-order tracking

Results so far are good

 Two main commits:
– nir: Use value range analysis to eliminate tautological compares

– nir: Use value range analysis to convert a fmin to an fsat

total instructions in shared programs: 15088355 -> 15027041 (-0.41%)
instructions in affected programs: 2823740 -> 2762426 (-2.17%)
helped: 10614
HURT: 2
helped stats (abs) min: 1 max: 294 x̄: 5.78 x̃: 2
helped stats (rel) min: 0.05% max: 58.33% x̄: 3.23% x̃: 1.37%
HURT stats (abs) min: 6 max: 6 x̄: 6.00 x̃: 6
HURT stats (rel) min: 0.30% max: 0.30% x̄: 0.30% x̃: 0.30%
95% mean confidence interval for instructions value: -5.99 -5.56
95% mean confidence interval for instructions %-change: -3.32% -3.15%
Instructions are helped.

6

Existing 2nd-order tracking

Tim Arceri’s recently did some work to propagate compare results into branches.

7

Future 2nd-order tracking

Infer value ranges from if-statement conditions, loop conditions, etc.

 Add NIR instructions similar to clang’s / MSVC’s “assume” built-in.

– ssa_4 = assume_gt ssa_3, 0

– Could expose directly in GLSL / SPIR-V

 Allows tracking of ranges after if-statements are replaced with bcsel

 Interferes with copy prop, CSE, etc.

– Run optimization loop, strip assume instructions, run loop again?

 Or – hash values based on SSA and block ID

– Harder to deal with bcsel

8

Questions?

https://cgit.freedesktop.org/~idr/mesa/log/?h=simple-range-analysis

