
An Introduction to i965 Assembly
and Bit Twiddling Hacks
Matt Turner – X.Org Developer’s Conference 2018

2

Objectives

 Introduce i965 instruction assembly

– At least enough to know what you’re looking at

 Tell you how it’s different from other GPUs

 Demonstrate some interesting optimizations it allows

 Show our method of verifying instructions are valid

3

Assumptions

 Probably already familiar with some assembly language

 If you’re here, maybe familiar with a GPU assembly language

 Probably know of weird architectures or instructions

– Maybe know CPUs because of weird instructions

4

Intel Gen Graphics (i965)

 “i965” is the name of Intel’s graphics core from 2006

 We call that Gen4 graphics

 Everything since then is a descendant

– E.g., Ironlake, Sandy Bridge, Ivy Bridge, Haswell, Broadwell, Skylake, Kaby Lake, …

 Instruction set changes like the rest of the hardware with each generation

– But still very recognizable

5

In common with other GPUs

 Source and destination modifiers

– source: neg, abs, neg+abs; dest: saturate

 Instruction predication

– Ability to nullify an instruction

 Unified register file

– Integer and floating-point use same registers

Less common features

 Conditional modifiers

 Mixed type operations

– Fewer each generation

 Vector immediate values

 Register regioning

i965 instruction set features

6

Common features

 Unified register file

– Can operate on floating-point data as integer in same register (and vice versa)

– 128 256-bit registers, usable as 8x floats, 4x doubles, 16x words, etc.

 Source modifiers

– Written as “-”, “(abs)”, “-(abs)” (and sometimes “~”) before a source operand

 Saturate (clamp result to 0.0 to 1.0)

– Written as “.sat” suffix on instruction mnemonic

 Instruction predication

– Written as “(condition)” before instruction, uses a special flag register

7

Trivial i965 program (glxgears fragment shader)

8

i965 instruction set is different (but familiar...)

 GPU instruction sets are necessarily different than CPU ISAs

 Designed to execute massively parallel programs

 Today most GPU ISAs appear scalar (SPMD model)

– Compilers are good at scalar code

– Compiler doesn’t need to know how big that “vector register” is

 i965 looks like AVX2 with channel masking (SIMD model)

– Exposes vector architecture to compiler writer

– Compiler must consider cross-channel interference

– But offers lots of flexibility

9

Breaking it down

op(exec size) dest<stride>type src0<stride>type src1<stride>type

 op – opcode. E.g., add, mul, mov, sel, send, etc.

 execution size – Number of channels to operate on

 dest, src0, src1 – Operands

– Includes register file, register number, subregister number

 stride – Parameters describing order registers’ channels will be read

 type – Operand data type

– Common types: F (float), D (32-bit doubleword), UD (32-bit unsigned)

10

op(exec size) dest<stride>type src0<stride>type src1<stride>type

add(8) g4<1>F g5<8,8,1>F g6<8,8,1>F

 Adds 8 (exec size)

– Consecutive floats in general register #5 with

– Consecutive floats in general register #6

– Storing in consecutive float channels of general register #4

Basic floating-point addition

11

add(8) g4<1>F g5<8,8,1>F g6<8,8,1>F

Basic floating-point addition

g5.0<8,8,1>F

g6.0<8,8,1>F

g4.0<1>F

x₇ x₆ x₅ x₄ x₃ x₂ x₁ x₀

ʏ₇ ʏ₆ ʏ₅ ʏ₄ ʏ₃ ʏ₂ ʏ₁ ʏ₀

ᴢ₇ ᴢ₆ ᴢ₅ ᴢ₄ ᴢ₃ ᴢ₂ ᴢ₁ ᴢ₀

+ + + + + + + +

= = = = = = = =

12

 Parameters of the <stride> define a register region

– Defines the manner in which the registers channels are accessed

 Destination has a single parameter (just called stride) that skips components

 Sources have three parameters

– Vertical stride, width, horizontal stride, written <V,W,H>

Register Regioning

13

add(4) g4.1<2>F g5<4,2,0>F g6<4,2,2>F

Register Regioning example

g5.0<4,2,0>F

g6.0<4,2,2>F

g4.1<2>F

x₃ x₂ x₁ x₀

ʏ₃ ʏ₂ ʏ₁ ʏ₀

ᴢ₃ ᴢ₂ ᴢ₁ ᴢ₀

+ ++ +

= = = =

14

 Best interpreted by reading them backwards

– Striding horizontally, accessing width channels

– Then stride vertically from the beginning of the “width”

– Repeat striding horizontally, then vertically until exec size channels have
been accessed

Source Register Regioning

15

add(4) g4.1<2>F g5<4,2,0>F g6<4,2,2>F

 Access 2 (width) channels by striding by 2 (horizontally)

 Then stride by 4 (vertically)

Register Regioning example

g6.0<4,2,2>Fʏ₃ ʏ₂ ʏ₁ ʏ₀

16

 Only a few register regions are common

– <8,8,1> - standard “read the channels in order”

– <0,1,0> - uniform “read the same channel” exec size times

– <0,4,1> - vec4 uniform “read same four channels in order”

 Equivalent regions can be described in multiple ways

 Many restrictions on what combinations are legal

– Must consider all operand regions, subregister, etc, to determine legality

– Difficult for a human to quickly determine whether an instruction is legal

Register Regioning key points

17

mov(8) g3<1>F -g2<8,8,1>D

 Integer True represented by all-ones (-1) and False represented by 0

 Want float 1.0f for true and 0.0f for false

 Implement with a type-converting move and a negation modifier

bool to float

18

 GLSL built-in variable that indicates if primitive is front or backfacing

 Thread payload contains backfacing bit in bit 15

gl_FrontFacing

19

 GLSL built-in variable that indicates if primitive is front or backfacing

 Thread payload contains backfacing bit in bit 15

gl_FrontFacing

20

 Backfacing bit is the high bit — the sign bit — of a 16-bit word

 Could use negation source modifier to flip that bit… except for 0

 Low bits of payload are primitive topology, and it must be non-zero!

gl_FrontFacing, a realization

21

asr(8) g2<1>D -g0<0,1,0>W 15D

 Backfacing bit is the high bit — the sign bit — of a 16-bit word

 Could use negation source modifier to flip that bit… except for 0

 Low bits of payload are primitive topology, and it must be non-zero!

 All in one instruction

– Negate to flip high bit

– Arithmetic shift right to fill low 16 bits

– Sign-extend result to fill high 16-bits

gl_FrontFacing, a realization

22

 Returns 1.0 if x > 0.0; -1.0 for x < 0.0; 0.0 for x == 0.0

sign(float x)

23

 Operate on float’s bits directly

– Extract sign bit

– Conditionally OR in 1.0f (0x3f800000) if input is non-zero

sign(float x), better

24

 Operate on float’s bits directly

– Extract sign bit

– Conditionally OR in 1.0f (0x3f800000) if input is non-zero

sign(float x), better

25

 Operate on float’s bits directly

– Extract sign bit

– Conditionally OR in 1.0f (0x3f800000) if input is non-zero

sign(float x), better

26

tests/shaders/glsl-fs-integer-multiplication

27

More complex example

28

 At least 10 different architectural features in use

 Lots of knobs, even more restrictions

– On regioning (very complex)

– On source mods, operand types, saturate, conditional-mod, per-instruction

– Restrictions change each generation

 Not simple to inspect a program and verify restrictions are not violated

– I feel this way after six years of practice

– How can I expect those less experienced to do this?

Complexity even in simple cases

29

mesa/src/intel/compiler/brw_eu_validate.c

 Validates 8 classes of problems

– Around 50 restrictions checked in total

– Includes all register regioning restrictions (which are the easiest to miss)

 Nearly exhaustive unit testing

 Automatically validates generated shader programs in debug builds

 Optionally validates with INTEL_DEBUG={fs,vs,cs,…} envar

Validate the generated assembly

30

 Things still slip through

– Not all restrictions are checked (yet)

– Validator doesn’t run in release builds

 Kernel v4.13 captures compiled shaders in error state

 aubinator_error_decode runs validator on error states

– Improved validator capable of detecting previously undetected problems

Post-mortem debugging

31

 But manageably so with some guard rails

 Offers interesting optimization possibilities

– More than just bit-twiddling hacks

 Challenging and rewarding to apply knowledge of i965 instruction set to
optimize apps

 I hope this talk enables you to do just that!

i965 instruction set is complex

33

Two 2x2 subspans
(a SIMD8 fragment
shader invocation)

34

 Indicates whether an invocation is a helper

– Only used for calculating derivatives, etc.

 Information provided in thread payload as a pixel mask

– Again opposite of what we need; Set bit if not a helper

gl_HelperInvocation

35

shr(8) g2<1>UW g1.28<1,8,0>UB 0x76543210UV

 Right shift with vector immediate

– Gets bit into the right location

– Garbage in high bits, and bit is still opposite of what we need

gl_HelperInvocation

>>7 >>6 >>5 >>4 >>3 >>2 >>1 >>0 >>7 >>6 >>5 >>4 >>3 >>2 >>1 >>0

g1.28<1,8,0>UB

0x76543210UV

g2<1>UWx₁₅ x₁₄ x₁₃ x₁₂ x₁₁ x₁₀ x₉ x₈ x₇ x₆ x₅ x₄ x₃ x₂ x₁ x₀

36

and(8) g3<1>UD ~g2<8,8,1>UW 0x0001UW

 Need to clean up shift’s result

– Garbage in high bits

– Low bit is still opposite of what we need

 Negate source modifier on and/or/xor on Broadwell+ performs bitwise-not

 Gives us 0/1

– Now just a negation (likely free!) converts to canonical true/false representations

 Two instructions, no flag register used

gl_HelperInvocation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Title and Bulleted Text
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

