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Objectives

 Introduce i965 instruction assembly

– At least enough to know what you’re looking at

 Tell you how it’s different from other GPUs

 Demonstrate some interesting optimizations it allows

 Show our method of verifying instructions are valid
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Assumptions

 Probably already familiar with some assembly language

 If you’re here, maybe familiar with a GPU assembly language

 Probably know of weird architectures or instructions

– Maybe know CPUs because of weird instructions
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Intel Gen Graphics (i965)

 “i965” is the name of Intel’s graphics core from 2006

 We call that Gen4 graphics

 Everything since then is a descendant

– E.g., Ironlake, Sandy Bridge, Ivy Bridge, Haswell, Broadwell, Skylake, Kaby Lake, …

 Instruction set changes like the rest of the hardware with each generation

– But still very recognizable
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In common with other GPUs

 Source and destination modifiers

– source: neg, abs, neg+abs; dest: saturate

 Instruction predication

– Ability to nullify an instruction

 Unified register file

– Integer and floating-point use same registers

Less common features

 Conditional modifiers

 Mixed type operations

– Fewer each generation

 Vector immediate values

 Register regioning

i965 instruction set features
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Common features

 Unified register file

– Can operate on floating-point data as integer in same register (and vice versa)

– 128 256-bit registers, usable as 8x floats, 4x doubles, 16x words, etc.

 Source modifiers

– Written as “-”, “(abs)”, “-(abs)” (and sometimes “~”) before a source operand

 Saturate (clamp result to 0.0 to 1.0)

– Written as “.sat” suffix on instruction mnemonic

 Instruction predication

– Written as “(condition)” before instruction, uses a special flag register
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Trivial i965 program (glxgears fragment shader)
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i965 instruction set is different (but familiar...)

 GPU instruction sets are necessarily different than CPU ISAs

 Designed to execute massively parallel programs

 Today most GPU ISAs appear scalar (SPMD model)

– Compilers are good at scalar code

– Compiler doesn’t need to know how big that “vector register” is

 i965 looks like AVX2 with channel masking (SIMD model)

– Exposes vector architecture to compiler writer

– Compiler must consider cross-channel interference

– But offers lots of flexibility
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Breaking it down

op(exec size)   dest<stride>type    src0<stride>type     src1<stride>type

 op – opcode. E.g., add, mul, mov, sel, send, etc.

 execution size – Number of channels to operate on 

 dest, src0, src1 – Operands

– Includes register file, register number, subregister number

 stride – Parameters describing order registers’ channels will be read

 type – Operand data type

– Common types: F (float), D (32-bit doubleword), UD (32-bit unsigned)
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op(exec size)   dest<stride>type    src0<stride>type     src1<stride>type

add(8)              g4<1>F                  g5<8,8,1>F             g6<8,8,1>F

 Adds 8 (exec size)

– Consecutive floats in general register #5 with

– Consecutive floats in general register #6

– Storing in consecutive float channels of general register #4

Basic floating-point addition
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add(8)              g4<1>F                  g5<8,8,1>F             g6<8,8,1>F

Basic floating-point addition

g5.0<8,8,1>F

g6.0<8,8,1>F

g4.0<1>F

x₇ x₆ x₅ x₄ x₃ x₂ x₁ x₀

ʏ₇ ʏ₆ ʏ₅ ʏ₄ ʏ₃ ʏ₂ ʏ₁ ʏ₀

ᴢ₇ ᴢ₆ ᴢ₅ ᴢ₄ ᴢ₃ ᴢ₂ ᴢ₁ ᴢ₀

+ + + + + + + +

= = = = = = = =
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 Parameters of the <stride> define a register region

– Defines the manner in which the registers channels are accessed

 Destination has a single parameter (just called stride) that skips components

 Sources have three parameters

– Vertical stride, width, horizontal stride, written <V,W,H>

Register Regioning
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add(4)              g4.1<2>F               g5<4,2,0>F             g6<4,2,2>F

Register Regioning example

g5.0<4,2,0>F

g6.0<4,2,2>F

g4.1<2>F

x₃ x₂ x₁ x₀

ʏ₃ ʏ₂ ʏ₁ ʏ₀

ᴢ₃ ᴢ₂ ᴢ₁ ᴢ₀

+ ++ +

= = = =
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 Best interpreted by reading them backwards

– Striding horizontally, accessing width channels

– Then stride vertically from the beginning of the “width”

– Repeat striding horizontally, then vertically until exec size channels have 
been accessed

Source Register Regioning
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add(4)              g4.1<2>F               g5<4,2,0>F             g6<4,2,2>F

 Access 2 (width) channels by striding by 2 (horizontally)

 Then stride by 4 (vertically)

Register Regioning example

g6.0<4,2,2>Fʏ₃ ʏ₂ ʏ₁ ʏ₀
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 Only a few register regions are common

– <8,8,1> - standard “read the channels in order”

– <0,1,0> - uniform “read the same channel” exec size times

– <0,4,1> - vec4 uniform “read same four channels in order”

 Equivalent regions can be described in multiple ways

 Many restrictions on what combinations are legal

– Must consider all operand regions, subregister, etc, to determine legality

– Difficult for a human to quickly determine whether an instruction is legal

Register Regioning key points
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mov(8)          g3<1>F          -g2<8,8,1>D

 Integer True represented by all-ones (-1) and False represented by 0

 Want float 1.0f for true and 0.0f for false

 Implement with a type-converting move and a negation modifier

bool to float



18

 GLSL built-in variable that indicates if primitive is front or backfacing

 Thread payload contains backfacing bit in bit 15

gl_FrontFacing
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 GLSL built-in variable that indicates if primitive is front or backfacing

 Thread payload contains backfacing bit in bit 15

gl_FrontFacing
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 Backfacing bit is the high bit — the sign bit — of a 16-bit word

 Could use negation source modifier to flip that bit… except for 0

 Low bits of payload are primitive topology, and it must be non-zero!

gl_FrontFacing, a realization
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asr(8)          g2<1>D          -g0<0,1,0>W     15D

 Backfacing bit is the high bit — the sign bit — of a 16-bit word

 Could use negation source modifier to flip that bit… except for 0

 Low bits of payload are primitive topology, and it must be non-zero!

 All in one instruction

– Negate to flip high bit

– Arithmetic shift right to fill low 16 bits

– Sign-extend result to fill high 16-bits

gl_FrontFacing, a realization
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 Returns 1.0 if x > 0.0; -1.0 for x < 0.0; 0.0 for x == 0.0

sign(float x)
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 Operate on float’s bits directly

– Extract sign bit

– Conditionally OR in 1.0f (0x3f800000) if input is non-zero

sign(float x), better
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 Operate on float’s bits directly

– Extract sign bit

– Conditionally OR in 1.0f (0x3f800000) if input is non-zero

sign(float x), better
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 Operate on float’s bits directly

– Extract sign bit

– Conditionally OR in 1.0f (0x3f800000) if input is non-zero

sign(float x), better
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tests/shaders/glsl-fs-integer-multiplication
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More complex example
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 At least 10 different architectural features in use

 Lots of knobs, even more restrictions  

– On regioning (very complex)

– On source mods, operand types, saturate, conditional-mod, per-instruction

– Restrictions change each generation

 Not simple to inspect a program and verify restrictions are not violated

– I feel this way after six years of practice

– How can I expect those less experienced to do this?

Complexity even in simple cases
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mesa/src/intel/compiler/brw_eu_validate.c

 Validates 8 classes of problems

– Around 50 restrictions checked in total

– Includes all register regioning restrictions (which are the easiest to miss)

 Nearly exhaustive unit testing

 Automatically validates generated shader programs in debug builds

 Optionally validates with INTEL_DEBUG={fs,vs,cs,…} envar

Validate the generated assembly
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 Things still slip through

– Not all restrictions are checked (yet)

– Validator doesn’t run in release builds

 Kernel v4.13 captures compiled shaders in error state

 aubinator_error_decode runs validator on error states

– Improved validator capable of detecting previously undetected problems

Post-mortem debugging
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 But manageably so with some guard rails

 Offers interesting optimization possibilities

– More than just bit-twiddling hacks

 Challenging and rewarding to apply knowledge of i965 instruction set to 
optimize apps

 I hope this talk enables you to do just that!

i965 instruction set is complex
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Two 2x2 subspans
(a SIMD8 fragment
shader invocation)
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 Indicates whether an invocation is a helper

– Only used for calculating derivatives, etc.

 Information provided in thread payload as a pixel mask

– Again opposite of what we need; Set bit if not a helper

gl_HelperInvocation
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shr(8)          g2<1>UW         g1.28<1,8,0>UB       0x76543210UV

 Right shift with vector immediate

– Gets bit into the right location

– Garbage in high bits, and bit is still opposite of what we need

gl_HelperInvocation

>>7 >>6 >>5 >>4 >>3 >>2 >>1 >>0 >>7 >>6 >>5 >>4 >>3 >>2 >>1 >>0

g1.28<1,8,0>UB

0x76543210UV

g2<1>UWx₁₅ x₁₄ x₁₃ x₁₂ x₁₁ x₁₀ x₉ x₈ x₇ x₆ x₅ x₄ x₃ x₂ x₁ x₀
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and(8)          g3<1>UD         ~g2<8,8,1>UW       0x0001UW

 Need to clean up shift’s result

– Garbage in high bits

– Low bit is still opposite of what we need

 Negate source modifier on and/or/xor on Broadwell+ performs bitwise-not

 Gives us 0/1

– Now just a negation (likely free!) converts to canonical true/false representations

 Two instructions, no flag register used

gl_HelperInvocation
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