
Optimizing i965
for the Future

Kenneth Graunke
Intel Visual Technologies Team
& The Mesa Community

Driver CPU Overhead

● Graphics is always trying to push the limits
○ Time spent by the driver is time wasted for the app

● In the spotlight lately
○ Vulkan has raised the bar (but lots of apps still using OpenGL…)

○ VR is a race against time, with no time to waste

○ Intel CPUs & integrated GPUs share a power envelope

(Less CPU ⇒ More GPU watts)

● Draw time state upload has always been a volcanic hot path

State Upload:
A Comparison

OpenGL: a mutable state machine

● A million different knobs…

● GL context is mutable and continually in flux
● Applications dial in the settings they want…
● Draw, rinse, repeat…

○ Vertex buffers & elements

○ Index buffers & primitive restart
○ Shaders
○ Image/buffer bindings
○ Samplers
○ Clipping, scissoring, viewports
○ Rasterization

○ Stream output

○ Tessellation

○ Multisampling
○ Blending
○ Color, depth, stencil buffers
○ Depth and stencil testing
○ Uniforms
○ Conditional rendering & queries

○ Topology

#1: State Streaming

● Translate on the fly… directly and efficiently
○ Track what state is dirty (which knobs were turned)…only emit what’s

needed

○ Applications try to minimize state changes, drivers track at a fine granularity

● “Not worth reusing state”
○ In theory, every draw could have brand new state

○ There is a cost…access context memory for cache lookup…miss…re-access…

○ Draw time becomes utterly volcanic

● i965 follows this approach

#2: Pre-baked Pipelines (Vulkan)

● Create immutable “pipeline objects” for each kind of object in the scene
○ Specify most of the state up-front, bake the GPU commands at creation

○ A bit of dynamic state remains

● Bind a pipeline, draw, repeat
○ Dirt cheap—submit pre-baked commands, no translation, discovery, etc.

● Fantastic if your app is set up for it… simple, efficient
○ But monolithic pipelines can be a challenge for very dynamic/mutable APIs

○ Basically the opposite model from the million-knob mutable context

#3: Gallium—Mesa’s Hybrid Model

● The model used by most Mesa drivers (notably not i965)
● Combines both state streaming and pre-baking

Gallium: CSOs

● Gallium uses “Constant State Objects” or CSOs
○ Immutable objects capturing part of the GPU state (say, blend state)

○ Cached for reuse across multiple draws

○ Drivers can associate their own state with a CSO

(create() + bind() hooks… plus set() for dynamic state)

● Essentially a “pipeline in pieces”

● Drivers work almost entirely with CSO objects

Gallium: State Tracking

● Adapts a mutable API (GL) to the immutable Gallium world (CSOs)

● The Mesa state tracker looks at the mutable GL context, does dirty
tracking, and ideally “rediscovers” cached CSOs for that state

○ “Hey, it looks like we’re drawing barrels again...”

○ If no hits, make new CSOs via create()...either way, bind()
○ Look familiar? st/mesa is actually a state streaming Mesa classic driver

● Can distill state for the driver
○ Figure out Y-flipping parity, or ignore blending options on integer RTs…

○ This can increase CSO cache hits & simplify life for drivers

Cached and reused!

An Extra Layer?

gl_context GPU commands

Classic (State Streaming)

gl_context pipe_* templates

Gallium

Driver CSOs

Let’s look at i965…

i965 CPU usage

● We knew it could be better
○ Code is pretty efficient, but bad tracking means it executes too often

○ Most of our workloads were GPU bound, so we’d mostly focused there

● Remained a constant source of criticism
○ Various Intel teams

○ Twitter shaming from Vulkan fans

○ The last straw…data showing i965 was getting obliterated by radeonsi.

(But this was actually constructive!)

● I decided to do something about it.

A (Worst) Case Study

● Say an application…binds a new texture
(or really does anything to any texture…or VBOs for that matter…)

● i965 reacts: “_NEW_TEXTURE”?!
○ For each texture and storage image bound in any shader stage…

■ Retranslate SURFACE_STATE from scratch
■ Retranslate SAMPLER_STATE from scratch
■ Build new binding tables

○ Trigger any state-dependent shader program changes

● State reuse would help a ton…but that’s actually hard
○ For surprising reasons

Memory MisManagement

● In the bad old days… one virtual GPU address space for all processes
○ Tell the kernel what buffers you have…it places them

○ Give it a list of pointers to patch up when it “relocates” buffers

● Intel GPUs save the last known GPU state in a “hardware context”
○ Back-to-back batches can inherit state instead of re-emitting commands

○ This includes pointers…to un-patched addresses.

○ Basically can’t inherit any state involving pointers… like SURFACE_STATE

● A lot of state uses a base address + offset to minimize pointers
○ But this means that all state must live in a single buffer

○ Need to re-emit due to lifetime problems

Modern Memory Management

● Modern hardware doesn’t need relocations
○ Gen8+ has 256TB of VMA… per-process

○ Softpin (Kernel 4.5+) allows userspace to assign virtual addresses

● Just assign addresses up front and never change them
○ Allows pre-baking or inheriting state involving pointers

● Can create 4GB “memory zones” for each base address
○ Use as many buffers as you want… no lifetime problems

○ Makes reusing state a ton easier

Architectural Overhaul, Please!

● Clearly need to save/reuse state
○ A pretty fundamental rework of the state upload code

○ No real infrastructure for this in the classic world

○ Need to modernize memory management

● Prototyping in the production driver was miserable
○ How to do it incrementally?

○ Need to handle every corner case right away

○ Enterprise kernel support makes modernizing miserable

○ Working on Gen11+ while thinking about Gen4+ is getting harder

● I realized…that Gallium solves these problems

WAT

In the past…

● Gallium never seemed to solve a problem we had
○ Didn’t magically get us from GL 2.1 to GL 4.5…tons of feature work…

○ Didn’t magically enable new hardware

○ Didn’t solve our driver performance problems at the time

○ Shader compiler story was entirely lacking, or far from viable (TGSI)…

didn’t give us a proper GLSL frontend, or a modern SSA-based optimizer

○ None of us cared about implementing more APIs

○ Added abstraction layers that didn’t seem useful

● Massive pile of work
○ Spend over a year rewriting the driver for questionable benefits

○ Certainly not a silver bullet

Time to reconsider?

● Gallium has improved a lot
○ Tons of work on st/mesa efficiency

○ Threading (u_threaded_context)

○ NIR is now a viable option, replacing TGSI

○ Years of polish from the community

● i965 has become more modular thanks to our Vulkan efforts
○ ISL library for surface layout calculations

○ BLORP library for blits and resolves

○ Shader compiler backend

● Still…OMG effort…and would it even pay off?

The Big Science Experiment

● Last November… I decided to try it
○ Started from scratch—using the noop driver template, not ilo
○ Borrow ideas from our Vulkan driver

○ Focus on the latest hardware & kernels

○ Gain the freedom to experiment

● Keep it on the down low
○ Didn’t want a ton of press / peanut gallery

○ Wanted to be able to scrap it if it wasn’t panning out

○ Talked to the community on IRC… code in public since January

10 months later...

Introducing iris_dri.so (“Iris”)

● The science experiment was a success
○ A new Gallium-based 3D driver for Intel Iris GPUs

○ i965 reimagined for 2018 and rebuilt from the ground up

● Code available now:
○ https://gitlab.freedesktop.org/kwg/mesa/commits/iris

○ Primarily for driver developers… not ready for users yet

○ Zero TGSI was consumed in the development of this driver

● Requirements:
○ Only supports Gen9+ hardware (Skylake)

○ Kernel v4.16+ (could go back to v4.5 if needed)

https://gitlab.freedesktop.org/kwg/mesa/commits/iris

Driver Status

● Iris is looking reasonably healthy
○ Currently passing 87% of Piglit

○ Can run some applications…others hit bugs

● Missing features
○ Color compression, fast clears, HiZ (critical for performance, not started)

○ Compute shaders & storage images (in progress)

○ Query objects (in progress) & sync objects (sketched)

○ Shader spilling (not started), on-disk shader cache (not started)

● Complete enough for measurements to be “in the right ball park”

Draw Overhead (from Piglit)

Draw calls per second (millions) i965

DrawArrays (1 VBO, 0 UBO, 0) w/ no state change 1.96 million

DrawArrays (4 VBO, 0 UBO, 0) w/ no state change 1.35 (69%)

DrawArrays (16 VBO, 0 UBO, 0) w/ no state change 0.586 (30%)

DrawArrays (1 VBO, 8 UBO, 8 Tex) w/ 1 tex change 0.271 (14%)

DrawElements (1 VBO, 0 UBO, 0) w/ no state chg. 1.91 million

Draw Overhead (from Piglit)

Draw calls per second (millions) i965 iris

DrawArrays (1 VBO, 0 UBO, 0) w/ no state change 1.96 million 9.11 million 4.65x

DrawArrays (4 VBO, 0 UBO, 0) w/ no state change 1.35 (69%) 9.07 (99%) 6.72x

DrawArrays (16 VBO, 0 UBO, 0) w/ no state change 0.586 (30%) 8.89 (97%) 15.2x

DrawArrays (1 VBO, 8 UBO, 8 Tex) w/ 1 tex change 0.271 (14%) 0.872 (9%) 3.21x

DrawElements (1 VBO, 0 UBO, 0) w/ no state chg. 1.91 million 7.23 million 3.79x

● On average 5.45x more draw calls per second

“wow those are quite good numbers”

There’s more: u_threaded_context

Draw calls per second (millions) i965 iris

DrawArrays (1 VBO, 0 UBO, 0) w/ no state change 1.96 million 12.70 million 6.48x

DrawArrays (4 VBO, 0 UBO, 0) w/ no state change 1.35 (69%) 12.50 (98%) 9.26x

DrawArrays (16 VBO, 0 UBO, 0) w/ no state change 0.586 (30%) 12.20 (97%) 20.8x

DrawArrays (1 VBO, 8 UBO, 8 Tex) w/ 1 tex change 0.271 (14%) 1.09 (8%) 4.02x

DrawElements (1 VBO, 0 UBO, 0) w/ no state chg. 1.91 million 7.37 million 3.85x

● But iris u_threaded_context support isn’t stable yet, so…<grain of salt>

Actual Performance?

● So… it has less CPU overhead. Most workloads are GPU bound.

● This microbenchmark is basically the ideal case for Gallium
○ Back-to-back draws hitting the CSO cache repeatedly

○ May be overstating the improvement… but, pretty representative, too?

● We need to measure real programs
○ One demo was ~19% faster on Apollolake

○ Many others are basically the same as i965

○ Currently measuring with HiZ/CCS disabled

○ Tons of risk—but the rewards seem worth it

Conclusion

● Debate settled!
○ i965 was the best classic driver, and Iris crushes it in terms of efficiency

○ Gallium is so much nicer to work with than Classic

○ We don’t regret the path we took, but are excited about the future

● Iris is a much better architecture for the future

● Mesa drivers can be fast, efficient, and competitive
○ Iris and RadeonSI have basically debunked the “Mesa is slow” myth

Next Steps

1. Make it work
○ Finish missing features, fix piles of bugs and push towards conformance

○ Test lots and lots of apps

○ Drop Gallium hacks so we can think about upstreaming it

2. Make it fast
○ Add missing performance features (color compression, HiZ, fast clears, …)

○ Use FrameRetrace on a whole bunch of apps, identify any gaps with i965

3. Dream about the future

Thank You!

Questions?

Backup

i965: Dirty Tracking

 _NEW_TEXTURE, _NEW_BUFFERS, _NEW_PROGRAM, …

 BRW_NEW_BATCH,
 BRW_NEW_{VS,GS,TCS,TES,FS,CS}_PROG_DATA,
 BRW_NEW_PRIMITIVE,
 BRW_NEW_SURFACES,
 BRW_NEW_BINDING_TABLE_POINTERS,
 BRW_NEW_INDICES,
 BRW_NEW_VERTICES,
 BRW_NEW_DEFAULT_TESS_LEVELS,
 BRW_NEW_PROGRAM_CACHE,
 BRW_NEW_STATE_BASE_ADDRESS,
 BRW_NEW_VUE_MAP_GEOM_OUT,
 BRW_NEW_TRANSFORM_FEEDBACK,
 BRW_NEW_RASTERIZER_DISCARD,
 BRW_NEW_NUM_SAMPLES, ...

i965: Dirty Tracking

 _NEW_TEXTURE, _NEW_BUFFERS, _NEW_PROGRAM, …

 BRW_NEW_BATCH,
 BRW_NEW_{VS,GS,TCS,TES,FS,CS}_PROG_DATA,
 BRW_NEW_PRIMITIVE,
 BRW_NEW_SURFACES,
 BRW_NEW_BINDING_TABLE_POINTERS,
 BRW_NEW_INDICES,
 BRW_NEW_VERTICES,
 BRW_NEW_DEFAULT_TESS_LEVELS,
 BRW_NEW_PROGRAM_CACHE,
 BRW_NEW_STATE_BASE_ADDRESS,
 BRW_NEW_VUE_MAP_GEOM_OUT,
 BRW_NEW_TRANSFORM_FEEDBACK,
 BRW_NEW_RASTERIZER_DISCARD,
 BRW_NEW_NUM_SAMPLES, ...

These are oddly specific…
Bits for every scenario...

i965: Atoms

● Giant list of 70 “tracked state atoms” (dirty bits, function to emit)

● Each draw, walk list of 70 atoms, call function via pointer...
● Atoms may produce data and add dirty flags for later atoms (messy!)
● Plus bunches of ad-hoc stuff

static const struct brw_tracked_state genX(ps_blend) = {
 .dirty = {
 .mesa = _NEW_BUFFERS | _NEW_COLOR | _NEW_MULTISAMPLE,
 .brw = BRW_NEW_BLORP | BRW_NEW_CONTEXT |
 BRW_NEW_FRAGMENT_PROGRAM,
 },
 .emit = genX(upload_ps_blend)
};

