Optimizing 365
for the Future

Kenneth Graunke
Intel Visual Technologies Team
& The Mesa Community

Driver CPU Overhead

e Graphicsis always trying to push the limits
o Time spent by the driver is time wasted for the app

e Inthespotlight lately
o Vulkan has raised the bar (but lots of apps still using OpenGL...)
o VRisarace against time, with no time to waste
o Intel CPUs & integrated GPUs share a power envelope
(Less CPU = More GPU watts)

e Draw time state upload has always been a volcanic hot path

State Upload:
A Comparison

OpenGL: a mutable state machine

A million different knobs...

Vertex buffers & elements
Index buffers & primitive restart
Shaders

Image/buffer bindings

Samplers

Clipping, scissoring, viewports
Rasterization

Stream output

0 O 0O 0 O O O O

GL context is mutable and continually in flux
Applications dial in the settings they want...

Draw, rinse, repeat...

© 0O O O O O O O

Tessellation

Multisampling

Blending

Color, depth, stencil buffers
Depth and stencil testing
Uniforms

Conditional rendering & queries
Topology

H#1. State Streaming

e Translate onthefly... directly and efficiently
o Track what state is dirty (which knobs were turned)...only emit what’s
needed
o Applications try to minimize state changes, drivers track at a fine granularity

e “Notworth reusing state”
o Intheory, every draw could have brand new state
o Thereis acost...access context memory for cache lookup...miss...re-access..
o Draw time becomes utterly volcanic

e 965 follows this approach

E
i
!

#2: Pre-baked Pipelines (Vulkan)

e Create immutable “pipeline objects” for each kind of object in the scene
o Specify most of the state up-front, bake the GPU commands at creation
o Abit of dynamic state remains

e Bind apipeline, draw, repeat
o Dirt cheap—submit pre-baked commands, no translation, discovery, etc.

e Fantasticif your appis set up for it... simple, efficient
o But monolithic pipelines can be a challenge for very dynamic/mutable APIs
o Basically the opposite model from the million-knob mutable context

#3. Gallium—Mesa’s Hybrid Model

e The model used by most Mesa drivers (notably not i965)
e Combines both state streaming and pre-baking

Gallium: CSOs

e Gallium uses “Constant State Objects” or CSOs
o Immutable objects capturing part of the GPU state (say, blend state)
o Cached for reuse across multiple draws
o Drivers can associate their own state with a CSO
(create() + bind() hooks... plus set() for dynamic state)

e Essentially a “pipeline in pieces”

e Driverswork almost entirely with CSO objects

Gallium: State Tracking

e Adapts a mutable API (GL) to the immutable Gallium world (CSOs)

e The Mesa state tracker looks at the mutable GL context, does dirty

tracking, and ideally “rediscovers” cached CSOs for that state
o “Hey, it looks like we're drawing barrels again...”
o If no hits, make new CSOs via create()...either way, bind()
o Look familiar? st/mesais actually a state streaming Mesa classic driver

e Candistill state for the driver
o Figure out Y-flipping parity, or ignore blending options on integer RTs...
o This canincrease CSO cache hits & simplify life for drivers

An Extra Layer?

Classic (State Streaming)

gl_context ‘ GPU commands

Gallium

gl_context ‘ pipe_* templates ‘ Driver CSOs

Cached and reused!

Let's look at i1965...

1965 CPU usage

e Weknew it could be better
o Code is pretty efficient, but bad tracking means it executes too often
o Most of our workloads were GPU bound, so we’d mostly focused there

e Remained a constant source of criticism
o Various Intel teams
o Twitter shaming from Vulkan fans
o Thelast straw...data showing i965 was getting obliterated by radeonsi.
(But this was actually constructive!)

e |decided to dosomething about it.

A (Worst) Case Study

e Sayan application...binds a new texture
(or really does anything to any texture...or VBOs for that matter...)

e i965reacts:“_NEW_TEXTURE"?!

o For each texture and storage image bound in any shader stage...

m Retranslate SURFACE_STATE from scratch
m Retranslate SAMPLER_STATE from scratch
m Build new binding tables

o Trigger any state-dependent shader program changes

e Statereuse would help a ton...but that’s actually hard
o For surprising reasons

Memory vsManagement

e Inthe badold days...one virtual GPU address space for all processes
o Tell the kernel what buffers you have...it places them
o Giveitalist of pointers to patch up when it “relocates” buffers

e Intel GPUs save the last known GPU state in a “hardware context”
o Back-to-back batches can inherit state instead of re-emitting commands
o Thisincludes pointers...to un-patched addresses.
o Basically can’t inherit any state involving pointers... like SURFACE_STATE

e Alot of state uses a base address + offset to minimize pointers
o But this means that all state must live in a single buffer
o Need tore-emit due to lifetime problems

Modern Memory Management

e Modern hardware doesn’t need relocations
o Gen8+ has 256TB of VMA... per-process
o Softpin (Kernel 4.5+) allows userspace to assign virtual addresses

e Just assign addresses up front and never change them
o Allows pre-baking or inheriting state involving pointers

e Cancreate 4GB “memory zones” for each base address
o Use as many buffers as you want... no lifetime problems
o Makes reusing state a ton easier

Architectural Overhaul, Please!

e Clearly need to save/reuse state
o A pretty fundamental rework of the state upload code
o Norealinfrastructure for this in the classic world
o Need to modernize memory management

e Prototypingin the production driver was miserable
o Howtodoitincrementally?
o Needto handle every corner case right away
o Enterprise kernel support makes modernizing miserable
o Working on Gen11+ while thinking about Gen4+ is getting harder

e |realized...that Gallium solves these problems

INn the past...

e Gallium never seemed to solve a problem we had

o

@)
(@)
(@)

(@)

Didn’t magically get us from GL 2.1 to GL 4.5...tons of feature work...
Didn’t magically enable new hardware

Didn’t solve our driver performance problems at the time

Shader compiler story was entirely lacking, or far from viable (TGSI)...
didn’t give us a proper GLSL frontend, or a modern SSA-based optimizer
None of us cared about implementing more APIs

Added abstraction layers that didn’t seem useful

e Massive pile of work

(@)

o

Spend over a year rewriting the driver for questionable benefits
Certainly not a silver bullet

Time to reconsider??

e Gallium hasimproved a lot
o Tons of work on st/mesa efficiency
o Threading (u_threaded_context)
o NIRis now aviable option, replacing TGSI
o Years of polish from the community

e 965 has become more modular thanks to our Vulkan efforts
o ISL library for surface layout calculations
o BLORP library for blits and resolves
o Shader compiler backend

e Still...OMG effort...and would it even pay off?

The Big Science Experiment

e Last November...| decided to try it
o Started from scratch—using the noop driver template, not ilo
o Borrowideas from our Vulkan driver
o Focusonthe latest hardware & kernels
o Gainthe freedom to experiment

e Keepitonthedown low
o Didn’t want a ton of press / peanut gallery
o Wanted to be able to scrap it if it wasn't panning out
o Talked tothe community on IRC... code in public since January

10 months later...

Introducing iris_dri.so (“Iris”)

e The science experiment was a success
o Anew Gallium-based 3D driver for Intel Iris GPUs
o 1965 reimagined for 2018 and rebuilt from the ground up

e Code available now:
o https://gitlab.freedesktop.org/kwg/mesa/commits/iris
o Primarily for driver developers... not ready for users yet
o Zero TGSI was consumed in the development of this driver

e Requirements:
o Only supports Gen9+ hardware (Skylake)
o Kernel v4.16+ (could go back to v4.5 if needed)

https://gitlab.freedesktop.org/kwg/mesa/commits/iris

Driver Status

e Irisislooking reasonably healthy
o Currently passing 87% of Piglit
o Canrunsome applications...others hit bugs

e Missing features
o Color compression, fast clears, HiZ (critical for performance, not started)
o Compute shaders & storage images (in progress)
o Query objects (in progress) & sync objects (sketched)
o Shader spilling (not started), on-disk shader cache (not started)

e Complete enough for measurements to be “in the right ball park”

Draw Overhead (from Piglit)

Draw calls per second (millions)

DrawArrays (1 VBO, 0 UBO, 0) w/ no state change

DrawArrays (4 VBO, 0 UBO, 0) w/ no state change

DrawArrays (16 VBO, 0 UBO, 0

) W/ no state change

DrawArrays (1 VBO, 8 UBO, 8 Tex) w/ 1 tex change

DrawElements (1 VBO, 0 UBO, 0

) w/ no state chg.

1965

1.96 million
1.35 (69%)
0.586 (30%)
0.271 (14%)

1.91 million

Draw Overhead (from Piglit)

Draw calls per second (millions) i965

DrawArrays (1 VBO, 0 UBO, 0)w/ no state change 1.96 million

DrawArrays (4 VBO, 0 UBO, 0)w/ no state change 1.35 (69%)

DrawArrays (16 VBO, 0 UBO, 0)w/ no state change 0.586 (30%)

DrawArrays (1 VBO, 8 UBO, 8 Tex) w/ 1 tex change 0.271 (14%)

DrawElements (1 VBO, 0 UBO, 0) w/ no state chg. 1.91 million

On average 5.45x more draw calls per second

iris

9.11 million
9.07 (99%)
8.89 (97%)
0.872 (9%)

7.23 million

4.65x
6.72x
15.2x
3.21x

3.79x

‘wow those are quite good numbers”

There's more; u_threaded_context

Draw calls per second (millions) i965

DrawArrays (1 VBO, 0 UBO, 0)w/ no state change 1.96 million

DrawArrays (4 VBO, 0 UBO, 0)w/ no state change 1.35 (69%)

DrawArrays (16 VBO, 0 UBO, 0)w/ no state change 0.586 (30%)

DrawArrays (1 VBO, 8 UBO, 8 Tex) w/ 1 tex change 0.271 (14%)

DrawElements (1 VBO, 0 UBO, 0) w/ no state chg. 1.91 million

Butiris u_threaded_context support isn’t stable yet, so...

iris

12.70 million
12.50 (98%)
12.20 (97%)
1.09 (8%)

7.37 million

<grain of salt>

6.48x
9.26x
20.8x
4.02x

3.85x

Actual Performance?

e So...ithasless CPU overhead. Most workloads are GPU bound.

e This microbenchmark is basically the ideal case for Gallium
o Back-to-back draws hitting the CSO cache repeatedly
o May be overstating the improvement... but, pretty representative, too?

e We needto measure real programs
o Onedemo was ~19% faster on Apollolake
o Many others are basically the same as 1965
o Currently measuring with HiZ/CCS disabled
o Tons of risk—but the rewards seem worth it

Conclusion

e Debate settled!
o 1965 was the best classic driver, and Iris crushes it in terms of efficiency
o Gallium is so much nicer to work with than Classic
o Wedon't regret the path we took, but are excited about the future

e lIrisis a much better architecture for the future

e Mesadrivers can be fast, efficient, and competitive
o Irisand RadeonSI have basically debunked the “Mesa is slow” myth

Next Steps

1. Makeit work
o Finish missing features, fix piles of bugs and push towards conformance
o Test lots and lots of apps
o Drop Gallium hacks so we can think about upstreaming it

2. Makeit fast
o Add missing performance features (color compression, HiZ, fast clears, ...)
o Use FrameRetrace on a whole bunch of apps, identify any gaps with i965

3. Dream about the future

Thank You!

Questions?

Backup

1965: Dirty Tracking

_NEW TEXTURE, NEW BUFFERS, NEW PROGRAM,

BRW NEW BATCH,

BRW NEW {VS,GS,TCS,TES,FS,CS} PROG DATA,
BRW NEW PRIMITIVE,

BRW NEW SURFACES,

BRW NEW BINDING TABLE POINTERS,
BRW NEW INDICES,

BRW NEW VERTICES,

BRW NEW DEFAULT TESS LEVELS,
BRW NEW PROGRAM CACHE,

BRW NEW STATE BASE ADDRESS,

BRW NEW VUE MAP GEOM OUT,

BRW NEW TRANSFORM FEEDBACK,

BRW NEW RASTERIZER DISCARD,

BRW NEW NUM SAMPLES,

1965: Dirty Tracking

These are oddly specific...

/ Bits for every scenario...
BRW NEW RASTERIZER DISCARD,

BRW NEW NUM SAMPLES,

1965; Atoms

Giant list of 70 “tracked state atoms” (dirty bits, function to emit)
= |

static const struct brw tracked state genX(ps blend)

.dirty = {
.mesa = _NEW_BUFFERS _NEW_COLOR | _NEW_MULTISAMPLE,

.brw = BRW NEW BLORP | BRW NEW CONTEXT
BRW NEW FRAGMENT PROGRAM,

Yo
.emit = genX(upload ps blend)
}i
Each draw, walk list of 70 atoms, call function via pointer...

Atoms may produce data and add dirty flags for later atoms (messy!)

Plus bunches of ad-hoc stuff

