
XDC 2018

Releasing and Testing Free Opensource
Graphics Drivers: the case of Mesa3D

Emil Velikov (emil.velikov@collabora.com)
Juan A. Suárez (jasuarez@igalia.com)

with
Pierre-Loup Griffais (pgriffais@valvesoftware.com)

XDC 2018

The speakers
- Emil Velikov

- Software engineer at Collabora
- Mesa developer since 2011, release manager 2014

- Juan A. Suárez
- Software engineer at Igalia
- Mesa developer since 2015, release manager 2017

XDC 2018

Agenda
- Introduction to Mesa3D
- Releases
- Historical walk of the release process
- The current process
- Test systems used
- Freedesktop’s GitLab CI
- LunarG’s Mesa3D regression test system

XDC 2018

Introduction to Mesa3D
- Started by Brian Paul in 1993 (25 years old!)
- “Framework” to implement graphics drivers supporting different graphics

standards: OpenGL/ES, Vulkan, OpenCL, OpenMax, etc
- Different parts common to all drivers
- Parts common to many drivers (NIR, Gallivm, etc)
- Drivers targeting many vendors

- Official drivers from Intel
- Unofficial drivers from AMD and NVidia
- ARM drivers - Qualcomm, Broadcom, Vivante
- Two virtual drivers - VMware and VirGL
- Four software drivers

XDC 2018

Releases
- Feature releases

- Big releases with new features
- 4 in a year (one per quarter, more or less): Mesa YEAR.X.0, with X={0..3}
- Started as branch point in master
- Apply patches to stabilize and fix bugs
- Create a RC release per week, around 4 weeks until everything is fine
- Create final release from last RC

- Bugfix releases
- No new features, only fixes
- One release every two weeks
- Last release after first feature release

XDC 2018

Project origin and early process
- Mesa 1.0 beta in February 1995
- Releasing handled by Brian Paul
- In early development stage
- No documentation of the process
- No distinct feature/bugfix releases

- Mesa feature/bugfix releases since 3.2
- Limited bugfix releases, 2-6 months between
- Noticeable improvements circa 6.4 - 7.0
- Conducts 2-3 stable releases, 1-4 months apart

XDC 2018

A more formal process
- Intel's Ian Romanick step after Brian
- Mesa 7.6, circa 2009
- Improves quality and frequency of bugfix releases - 2-3, monthly
- Introduces a tag for nomination:

NOTE: this is a candidate for back-porting to the X.Y stable branch.

XDC 2018

A more formal process (2)
- Intel's Carl Worth starts helping with bugfix releases
- Mesa 9.1, circa 2013
- Handles 6-9 bugfix releases, out every fortnight
- Introduces CC: mesa-stable@ deprecates earlier NOTE
- Formulates the acceptance criteria
- Documents the process, shortly before handing it over

XDC 2018

Document everything
- Emil Velikov steps in, after Ian and Carl
- Mesa 10.3, back in 2014
- Makes the releasing process MT
- Build test all* of Mesa - OSMesa, Nine, OpenCL…
- Build test on more platforms

- Linux: w/ and w/o libdrm (locally), Travis
- Windows: MinGW-w64 (locally), AppVeyor

- Refactored and doubled the releasing documentation
- Improved existing nominations scripts
- Introduces Fixes tag

XDC 2018

More than one release manager
- Andres and Juan from Igalia helping out since 17.0
- Initially helping out with bugfix release
- Minor misunderstandings who's doing which release
- Added a release table - preliminary dates, release managers
- Further tweaks to the scripts
- Working on Gitlab CI

XDC 2018

Fresh blood
- Dylan from Intel, helping out since 18.1
- Resident Python expert, helping with Mesa and Piglit python code
- Direct access to the Intel CI, more on that later

XDC 2018

CC vs Fixes
- CC: mesa-stable@

- simplifies managers’ job, and allows later nominations
- separates important fixes from the huge volume at mesa-dev@
- use when the offending commit is none/unknown

- Fixes
- consistently annotates the origin of the problem
- shows maintainer for which stable branches patch is applicable
- while, developers don’t need to bother knowing

- Will my patch get dropped silently?
- No, not even when the patch is self-rejected
- Release managers makes their best effort to apply the patches
- For patches which are not merged, the manager will inform author/nominator

XDC 2018

Is the release buildable?
- Several build tools

- autotools, scons and meson

- Drivers depends on LLVM
- Different versions
- Different APIs

- Detect as earlier as possible
- Not only the release, but also

master
- Automatic system: GitHub + Travis

+ AppVeyor

XDC 2018

Is the release working?
- Check if it builds is not enough
- Check it actually works => testing

- Manual testing: test suites, games, 3D apps, etc
- Automated testing

- Different types of tests
- Unit testing
- Functional testing

XDC 2018

Is the release working?
- Check if it builds is not enough
- Check it actually works => testing

- Manual testing: test suites, games, 3D apps, etc
- Automated testing

- Different types of tests
- Unit testing
- Functional testing

XDC 2018

Does the release has bugs?
- Intel CI

- Very powerful and useful CI system
- Used frequently also by developers
- Basic tool for release managers
- Required to success before making the release

- Running this test process takes lot of time
- For any late (critical) patches the testing has to be redone => almost delay
- Note: it means that (non-critical) patches arriving during this process, will be delayed

for next release (Nominated patches)

- Thoroughly explained in next talk
- Mark Janes & Clayton Craft - Mesa Continuous Integration at Intel

https://www.x.org/wiki/Events/XDC2018/Talks/#mark_clayton

XDC 2018

Improving our testing
- So far, main repository + GitHub + Travis CI + AppVeyor
- Now, we have GitLab in Freedesktop

- Check Daniel Stone & Keith Packard - freedesktop.org update talk
- It provides repositories
- It provides a Continuous Integration system
- It allows your own runners
- Many other features

- Igalia using GitLab[.com] during several releases as our own CI
- Used only when preparing releases
- Detect as much as possible regressions in earlier stages
- Used as previous step before using Intel CI

https://www.x.org/wiki/Events/XDC2018/Talks/#daniel_keith

XDC 2018

GitLab CI
- Premise: build once, test everywhere

- Reduce the whole build + testing time
- Try to use the same configuration in all tests
- Allow to use not-so-powerful hosts for testing

- Need an easy way to store the build artifacts and re-use them in all the
testing hosts

- Containers
- GitLab Registry
- Easy to (re-)generate locally

XDC 2018

GitLab CI: building
- Create several images using different build tools and different LLVM

versions
- As in Travis, ensures that Mesa3D can be built
- Use Rocker to build docker images: templates, mounts on build time, single executable

- Only keep one image
- This contains all the drivers we want to test

- Avoid re-building and installing all the dependencies required
- Create a base image with the dependencies plus different images with different LLVM

versions
- Only re-build them if there are new dependencies or changes
- Force a rebuild once per week to ensure we always get the last updates from the Linux

distribution

XDC 2018

XDC 2018

GitLab CI: testing
- Need real hardware with graphics cards
- GitLab allows to provide your own runners

- Different executors: SSH, Docker, VirtualBox, etc
- Our case: Docker + mounting graphics device
- Use tags to match testing jobs with specific hardware

- Trigger pipeline execution in other projects
- Main build in Mesa3D repository
- Triggers test building and running in other repositories

- Piglit
- Vulkan/OpenGL CTS
- Crucible

- Allows to browse between projects

XDC 2018

XDC 2018

XDC 2018

GitLab CI: testing
- Shows the test results in HTML (use piglit to run the tests)
- Exported as an GitLab’s artifact
- Use test results from last release as reference

- Run a simplified version for releases; results are the reference ones
- Detect regressions in the pre-release

XDC 2018

XDC 2018

XDC 2018

Is the release working?
- Check if it builds is not enough
- Check it actually works => testing

- Manual testing: test suites, games, 3D apps, etc
- Automated testing

- Different types of tests
- Unit testing
- Functional testing

XDC 2018

LunarG’s Mesa Driver Regression Testing
- Sponsored by Valve
- Testing OpenGL and Vulkan Mesa drivers
- Objectives

- Regression detection from one Mesa release to the next (open to public)
- Service to Mesa graphics driver developers (creates account to test personal branches)
- Ongoing testing of Mesa releases to build a history of results and ongoing release quality

monitoring
- NOT a performance benchmarking test suite

- Methodology
- Capture traces from Steam Linux games
- Replay traces on each Mesa release looking for image and performance regressions

XDC 2018

XDC 2018

XDC 2018

XDC 2018

XDC 2018

XDC 2018

XDC 2018

Mesa3D Releasing and Testing
- Thanks for your attention
- Questions?

