
Copyright © 2018 The Khronos® Group Inc. - Page 1

Vulkan Timeline Semaphores

Jason Ekstrand
September 2018

Copyright © 2018 The Khronos® Group Inc. - Page 2

Current Status of VkSemaphore
• Current VkSemaphores require a strict signal, wait, signal, wait… pattern

- One wait per signal
- After signal, it cannot be signaled again until after a wait
- Signal must be queued before wait
- Only for GPU waits; VkFence is for CPU waits

• These restrictions were required to make all of the corner-cases well-defined
- When is the semaphore reset and can be used again?
- What happens if you submit another signal while someone is waiting?

• Behavior has to be well-defined and the same on all platforms
- Windows, Linux, etc.
- Various hardware vendors with different implementation choices

Copyright © 2018 The Khronos® Group Inc. - Page 3

An Example of Concurrent Work
Consider a theoretical app with three queues and threads:
• Main 3D render loop, runs once per frame
• Physics model thread, runs once per 5ms
• Resource upload thread, runs on demand

What happens when each thread goes to call vkQueueSubmit...

Time

Time

Time

Time

Upload

3D

Physics

Render

Upload

Compute Compute Compute

Render Render

Frame

Compute Compute Compute Compute Compute Compute Compute Compute

Render Render Render

Frame

Render Render Render

Frame

Render

Upload

Copyright © 2018 The Khronos® Group Inc. - Page 4

An Example of Concurrent Work
Upload Thread:
1. Receives a list of resources needed in

the near future
2. Create command buffer with upload

commands
3. Get a new VkSemaphore
4. vkQueueSubmit on DMA queue
5. Notify render thread and give it the

semaphore

Render Thread:
1. Grab a physics snapshot and semaphore
2. Get fresh upload data and associated

semaphores
3. Build command buffers to render
4. Get a new VkSemaphore
5. vkQueueSubmit with waits on the physics

and upload semaphores and signals the
new semaphore

6. Pass new semaphore to WSI

Copyright © 2018 The Khronos® Group Inc. - Page 5

An Example of Concurrent Work
Physics Thread:
1. Get new data on character motions from engine
2. Build command buffers to update physics model
3. Get a new VkSemaphore
4. vkQueueSubmit with a signal on the semaphore
5. Destroy the semaphore?

a. Will anyone use this thing?
b. Is this a snapshot that 3D wants to use?
c. What if 3D wants to use it twice?
d. If, I want to destroy it, when is it safe to do so? I have commands pending

that will signal it.
e. Uh….?????

Copyright © 2018 The Khronos® Group Inc. - Page 6

A Partial Solution: More Message Passing!
The easy answer (from a driver perspective) is to tell the app writer that they just
need more mutex and condition variable message passing:
• Render thread must notify physics thread of which snapshots it’s using
• Physics thread only allocates semaphores for those snapshots
• Due to latency, the render thread choose the physics snapshot as late as

possible
• But not too late!
• If the render thread waits too long, it will block the physics thread
• All this message passing is expensive and adds latency!

Time
Time

Time

3D

Physics

Render

Compute Compute Compute

Render Render

Frame

Compute Compute Compute Compute Compute Compute Compute Compute

Render Render Render

Frame

Render Render Render

Frame

Render

Copyright © 2018 The Khronos® Group Inc. - Page 7

Finding a Better Solution
• The Khronos Vulkan working

group has been working on a
better solution
- Talking with game devs

about their needs
- Looking at alternative

synchronization models
- Discussing what’s feasible

on various platforms

• Determined we need a
new synchronization
programming model

Copyright © 2018 The Khronos® Group Inc. - Page 8

Timelines: A New Programming Model
Replace the boolean single-use VkSeamaphore with a timeline:
• Each timeline carries a monotonically increasing 64-bit value
• Signal operations increase the value to some arbitrary new value

- The signaler must be aware of the current value to ensure it increases
• Wait operations wait for the timeline value to be greater than or equal to

some client-specified wait value
- This implies allowing wait-before-signal behavior

• Timelines will support both GPU and CPU wait/query
• They will be shareable across processes like current semaphores and fences

Time
Time

Time

3D

Physics

Render

Compute Compute Compute

Render Render

Compute Compute Compute Compute Compute Compute Compute Compute

Render Render Render Render Render Render Render

Timeline 1 2 32 4 5 6 7 8 9 10 11

Copyright © 2018 The Khronos® Group Inc. - Page 9

Timelines: A New Programming Model
• More use-cases become well-defined:

- Signal-after-signal and wait-after-wait “just work”
- Can wait on previous signal operations, not just the latest
- Signal-before-wait is well defined (more on this later)

• Unifies GPU and CPU waits in a single object
- No more separation between VkFence and VkSemaphore

• Easier for application developers
- Most VkSemaphore re-use pools can be replaced with a single timeline
- In our previous example, each thread would have one timeline
- Fewer object recycling headaches

Copyright © 2018 The Khronos® Group Inc. - Page 10

Back to Our Example
With timelines, the structure of our example changes:
• Each thread is associated with a single timeline
• The physics thread doesn’t have to care about which semaphores get used
• Message passing (if any) can be done with simple atomics
• Threads can easily check the GPU progress of other threads by querying the

timeline counter value
• Timeline values can be descriptive:

- The physics thread could make it’s timeline value represent milliseconds
since game launch if it wanted to.

Copyright © 2018 The Khronos® Group Inc. - Page 11

Questions About Timelines?

